Published in

BioMed Central, BMC Bioinformatics, 1(21), 2020

DOI: 10.1186/s12859-020-03624-0

Links

Tools

Export citation

Search in Google Scholar

SOAPTyping: an open-source and cross-platform tool for sequence-based typing for HLA class I and II alleles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background The human leukocyte antigen (HLA) gene family plays a key role in the immune response and thus is crucial in many biomedical and clinical settings. Utilizing Sanger sequencing, the golden standard technology for HLA typing enables accurate identification of HLA alleles in high-resolution. However, only the commercial software, such as uTYPE, SBT-Assign, and SBTEngine, and very few open-source tools could be applied to perform HLA typing based on Sanger sequencing. Results We developed a user-friendly, cross-platform and open-source desktop application, known as SOAPTyping, for Sanger-based typing in HLA class I and II alleles. SOAPTyping can produce accurate results with a comprehensible protocol and featured functions. Moreover, SOAPTyping supports a more advanced group-specific sequencing primers (GSSP) module to solve the ambiguous typing results. We used SOAPTyping to analyze 36 samples with known HLA typing from the University of California Los Angeles (UCLA) International HLA DNA Exchange platform and 100 anonymous clinical samples, and the HLA typing results from SOAPTyping are identical to the golden results and 5.5 times faster than commercial software uTYPE, which shows the usability of SOAPTyping. Conclusions We introduce the SOAPTyping as the first open-source and cross-platform HLA typing software with the capability of producing high-resolution HLA typing predictions from Sanger sequence data.