Published in

Nature Research, Nature Communications, 1(11), 2020

DOI: 10.1038/s41467-020-17247-9

Links

Tools

Export citation

Search in Google Scholar

Optical parametric amplification of sub-cycle shortwave infrared pulses

Journal article published in 2020 by Yu-Chieh Lin ORCID, Yasuo Nabekawa ORCID, Katsumi Midorikawa ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractFew–cycle short–wave infrared (SWIR) pulses are useful tools for research on strong–field physics and nonlinear optics. Here we demonstrate the amplification of sub–cycle pulses in the SWIR region by using a cascaded BBO–based optical parametric amplifier (OPA) chain. By virtue of the tailored wavelength of the pump pulse of 708 nm, we successfully obtained a gain bandwidth of more than one octave for a BBO crystal. The division and synthesis of the spectral components of the pulse in a Mach–Zehnder–type interferometer set in front of the final amplifier enabled us to control the dispersion of each spectral component using an acousto–optic programmable dispersive filter inserted in each arm of the interferometer. As a result, we successfully generated 0.73–optical–cycle pulses at 1.8 μm with a pulse energy of 32 μJ.