Published in

MDPI, Agronomy, 7(10), p. 918, 2020

DOI: 10.3390/agronomy10070918

Links

Tools

Export citation

Search in Google Scholar

Solubility and Efficiency of Rock Phosphate Fertilizers Partially Acidulated with Zeolite and Pillared Clay as Additives

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Soluble phosphates are the most common sources currently used in crop production in tropical soils; however, they present low efficiency and are more expensive than natural rock phosphates. The objective was to develop new phosphate fertilizers with slow solubility through the partial acidification of rock phosphates (RPs), incorporating materials with adsorption characteristics to favor slow dissolution and prevent phosphorus (P) fixation in the soil. Three rock phosphates, Araxá (ARP), Bayovar (BRP) and Morocco (MRP), were evaluated at two acidulation levels (25 and 50% Ac.) and two additives; pillared clays (PILC) and zeolites (Zeo), plus triple superphosphate (TSP) and a control (nil-P). The soil diffusion was evaluated in concentric rings in Petri dishes. Solubility was evaluated in leaching columns and sampled in layers from surface for P forms in the soil profile. The relative agronomic efficiency (RAE) was evaluated in maize. Greater diffusion was provided by TSP, followed by BRP and MRP both with 50% Ac. + Zeo, and MRP with 50% Ac. + PILC. Percolated P was more pronounced under TSP, followed by RPs (BRP and MRP) with 50% Ac. + Zeo. BRP and MRP + 50% Ac. were the most promising sources with RAE above 74% compared to TSP.