Published in

International Union of Crystallography, IUCrJ, 4(7), p. 728-736, 2020

DOI: 10.1107/s2052252520007411

Links

Tools

Export citation

Search in Google Scholar

Millisecond time-resolved serial oscillation crystallography of a blue-light photoreceptor at a synchrotron

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The recent development of serial crystallography has popularized time-resolved crystallography as a technique to determine the structure of protein-reaction intermediate states. However, most approaches rely on the availability of thousands to millions of microcrystals. A method is reported here, using monochromatic synchrotron radiation, for the room-temperature collection, processing and merging of X-ray oscillation diffraction data from <100 samples in order to observe the build up of a photoreaction intermediate species. Using this method, we monitored with a time resolution of 63 ms how the population of a blue-light photoreceptor domain in a crystal progressively photoconverts from the dark to the light state. The series of resulting snapshots allows us to visualize in detail the gradual rearrangement of both the protein and chromophore during this process.