Published in

SAGE Publications, Therapeutic Advances in Medical Oncology, (12), p. 175883592093609, 2020

DOI: 10.1177/1758835920936093

Links

Tools

Export citation

Search in Google Scholar

Novel strategies using modern radiotherapy to improve pancreatic cancer outcomes: toward a new standard?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive solid tumours with an estimated 5-year overall survival rate of 7% for all stages combined. In this highly resistant disease that is located in the vicinity of many radiosensitive organs, the role of radiotherapy (RT) and indications for its use in this setting have been debated for a long time and are still under investigation. Although a survival benefit has yet to be clearly demonstrated for RT, it is the only technique, other than surgery, that has been demonstrated to lead to local control improvement. The adjuvant approach is now strongly challenged by neoadjuvant treatments that could spare patients with rapidly progressive systemic disease from unnecessary surgery and may increase free margin (R0) resection rates for those eligible for surgery. Recently developed dose-escalated RT treatments, designed either to maintain full-dose chemotherapy or to deliver a high biologically effective dose, particularly to areas of contact between the tumour and blood vessels, such as hypofractionated ablative RT (HFA-RT) or stereotactic body RT (SBRT), are progressively changing the treatment landscape. These modern strategies are currently being tested in prospective clinical trials with encouraging preliminary results, paving the way for more effective treatment combinations using novel targeted therapies. This review summarizes the current literature regarding the use of RT for the treatment of primary PDAC, describes the limitations of conventional RT, and discusses the emerging role of dose-escalated RT and heavy-particle RT.