Published in

BMJ Publishing Group, Occupational and Environmental Medicine, 10(77), p. 713-720, 2020

DOI: 10.1136/oemed-2020-106439

Links

Tools

Export citation

Search in Google Scholar

Exposure to cholinesterase inhibiting insecticides and blood glucose level in a population of Ugandan smallholder farmers

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ObjectivesThe risk of diabetes mellitus may be elevated among persons exposed to some pesticides, including cholinesterase-inhibiting insecticides (organophosphates and carbamates). The objective of this study was to investigate how acetylcholinesterase activity was associated with mean blood glucose levels among smallholder farmers in Uganda.MethodsWe conducted a short-term follow-up study among 364 smallholder farmers in Uganda. Participants were examined three times from September 2018 to February 2019. At each visit, we measured glycosylated haemoglobin A (HbA1c) as a measure of long-term average blood glucose levels. Exposure to organophosphate and carbamate insecticides was quantified using erythrocyte acetylcholinesterase normalised by haemoglobin (AChE/Hb). For a subgroup of participants, fasting plasma glucose (FPG) was also available. We analysed HbA1c and FPG versus AChE/Hb in linear mixed and fixed effect models adjusting for age, sex, physical activity level, and consumption of fruits and vegetables, alcohol and tobacco.ResultsContrary to our hypothesis, our mixed effect models showed significant correlation between low AChE/Hb and low HbA1c. Adjusted mean HbA1c was 0.74 (95% CI 0.17 to 1.31) mmol/mol lower for subjects with AChE/Hb=24.3 U/g (35th percentile) compared with subjects with AChE/Hb=25.8 U/g (50th percentile). Similar results were demonstrated for FPG. Fixed effect models showed less clear correlations for between-phase changes in AChE/Hb and HbA1c.ConclusionsOur results do not clearly support a causal link between exposure to cholinesterase-inhibiting insecticides and elevated blood glucose levels (expressed as HbA1c and FPG), but results should be interpreted with caution due to the risk of reverse causality.