Published in

arXiv, 2020

DOI: 10.48550/arxiv.2004.00147

American Physical Society, Physical review B, 4(102), 2020

DOI: 10.1103/physrevb.102.045201

Links

Tools

Export citation

Search in Google Scholar

Optical conductivity of the type-II Weyl semimetal TaIrTe4

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

TaIrTe$_4$ is an example of a candidate Weyl type-II semimetal with a minimal possible number of Weyl nodes. Four nodes are reported to exist a single plane in $k$-space. The existence of a conical dispersion linked to Weyl nodes has yet to be shown experimentally. Here we use optical spectroscopy as a probe of the band structure on a low-energy scale. Studying optical conductivity allows us to probe intraband and interband transitions with zero momentum. In TaIrTe$_4$, we observe a narrow Drude contribution and an interband conductivity that may be consistent with a tilted linear band dispersion up to 40~meV. The interband conductivity allows us to establish the effective parameters of the conical dispersion; effective velocity $v=1.1⋅ 10^{4}$~m/s and tilt $γ=0.37$. The transport data, Seebeck and Hall coefficients, are qualitatively consistent with conical features in the band structure. Quantitative disagreement may be linked to the multiband nature of TaIrTe$_4$.