Published in

IOP Publishing, Chinese Physics B, 11(29), p. 116201, 2020

DOI: 10.1088/1674-1056/aba2e5

Links

Tools

Export citation

Search in Google Scholar

Plastic deformation mechanism transition of Ti/Ni nanolaminate with a pre-existing crack: A molecular dynamics study

Journal article published in 2020 by Mengjia Su, Qiong Deng, Minrong An, Lanting Liu
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Tensile behaviors of Ti/Ni nanolaminate with model-I crack are investigated by molecular dynamics simulations. The Ti/Ni nanolaminates with center crack either in Ti layer or in Ni layer under different loading directions are utilized to systematically study the mechanical performance of the cracked material. The results indicate that pre-existing crack dramatically changes the plastic deformation mechanism of the Ti/Ni nanolaminate. Unlike the initial plastic deformation originating from the interface or weak Ti layer of the crack-free samples, the plastic behavior of cracked Ti/Ni nanolaminate first occurs at the crack tip due to the local stress concentration. Subsequent plastic deformation is dominated by the interaction between the crack and interface. The Ti/Ni interface not only impedes the movement of the initial plastic deformation carriers (dislocation, slip band, and deformation twinning) from the crack tip, but also promotes the movement of interfacial dislocations in the tension process. Microstructure evolution analysis further confirms that the plastic deformation mechanism transition is ascribed to the orientation-dependent tensile behavior at the crack tip, which is intrinsically attributed to the anisotropy of the certain crystal structure and loading direction of the cracked Ti/Ni nanolaminate. In addition, by analyzing the effects of different plastic deformation carriers on crack propagation in specific crystal, it can be discovered that the interfacial dislocations moving towards the crack tip can further promote the crack growth.