Published in

CSIRO Publishing, Wildlife Research, 8(47), p. 677, 2020

DOI: 10.1071/wr19181

Links

Tools

Export citation

Search in Google Scholar

Edge effects created by fenced conservation reserves benefit an invasive mesopredator

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract ContextFenced reserves from which invasive predators are removed are increasingly used as a conservation management tool, because they provide safe havens for susceptible threatened species, and create dense populations of native wildlife that could act as a source population for recolonising the surrounding landscape. However, the latter effect might also act as a food source, and promote high densities of invasive predators on the edges of such reserves. AimsOur study aimed to determine whether activity of the feral cat is greater around the edges of a fenced conservation reserve, Arid Recovery, in northern South Australia. This reserve has abundant native rodents that move through the fence into the surrounding landscape. MethodsWe investigated (1) whether feral cats were increasingly likely to be detected on track transects closer to the fence over time as populations of native rodents increased inside the reserve, (2) whether native rodents were more likely to be found in the stomachs of cats caught close to the reserve edge, and (3) whether individual cats selectively hunted on the reserve fence compared with two other similar fences, on the basis of GPS movement data. Key resultsWe found that (1) detection rates of feral cats on the edges of a fenced reserve increased through time as populations of native rodents increased inside the reserve, (2) native rodents were far more likely to be found in the stomach of cats collected at the reserve edge than in the stomachs of cats far from the reserve edge, and (3) GPS tracking of cat movements showed a selection for the reserve fence edge, but not for similar fences away from the reserve. ConclusionsInvasive predators such as feral cats are able to focus their movements and activity to where prey availability is greatest, including the edges of fenced conservation reserves. This limits the capacity of reserves to function as source areas from which animals can recolonise the surrounding landscape, and increases predation pressure on populations of other species living on the reserve edge. ImplicationsManagers of fenced conservation reserves should be aware that increased predator control may be critical for offsetting the elevated impacts of feral cats attracted to the reserve fence.