Published in

Nature Research, Nature Communications, 1(11), 2020

DOI: 10.1038/s41467-020-16510-3

Links

Tools

Export citation

Search in Google Scholar

Ambient weathering of magnesium oxide for CO2 removal from air

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractTo avoid dangerous climate change, new technologies must remove billions of tonnes of CO2 from the atmosphere every year by mid-century. Here we detail a land-based enhanced weathering cycle utilizing magnesite (MgCO3) feedstock to repeatedly capture CO2 from the atmosphere. In this process, MgCO3 is calcined, producing caustic magnesia (MgO) and high-purity CO2. This MgO is spread over land to carbonate for a year by reacting with atmospheric CO2. The carbonate minerals are then recollected and re-calcined. The reproduced MgO is spread over land to carbonate again. We show this process could cost approximately $46–159 tCO2−1 net removed from the atmosphere, considering grid and solar electricity without post-processing costs. This technology may achieve lower costs than projections for more extensively engineered Direct Air Capture methods. It has the scalable potential to remove at least 2–3 GtCO2 year−1, and may make a meaningful contribution to mitigating climate change.