Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(10), 2020

DOI: 10.1038/s41598-020-67983-7

Links

Tools

Export citation

Search in Google Scholar

Validity of traditional physical activity intensity calibration methods and the feasibility of self-paced walking and running on individualised calibration of physical activity intensity in children

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThere are no practical and valid methods for the assessment of individualised physical activity (PA) intensity in observational studies. Therefore, we investigated the validity of commonly used metabolic equivalent of tasks (METs) and pre-determined PA intensity classification methods against individualised PA intensity classification in 35 children 7–11-years-of-age. Then, we studied validity of mean amplitude deviation (MAD) measured by accelerometry during self-paced walking and running in assessment of individualised PA intensity. Individualised moderate PA (MPA) was defined as V̇O2 ≥ 40% of V̇O2reserve and V̇O2 < ventilatory threshold (VT) and vigorous PA (VPA) as V̇O2 ≥ VT. We classified > 3–6 (or alternatively > 4–7) METs as MPA and > 6 (> 7) METs as VPA. Task intensities were classified according to previous calibration studies. MET-categories correctly identified 25.9–83.3% of light PA, 85.9–90.3% of MPA, and 56.7–82.2% of VPA. Task-specific categories correctly classified 53.7% of light PA, 90.6% of MPA, and 57.8% of VPA. MAD during self-paced walking discriminated MVPA from light PA (sensitivity = 67.4, specificity = 88.0) and MAD during self-paced running discriminated VPA from MPA (sensitivity = 78.8, specificity = 79.3). In conclusion, commonly used methods may misclassify PA intensity in children. MAD during self-paced running may provide a novel and practical method for determining individualised VPA intensity in children.