Published in

American Association for Cancer Research, Molecular Cancer Research, 9(18), p. 1302-1314, 2020

DOI: 10.1158/1541-7786.mcr-20-0197

Links

Tools

Export citation

Search in Google Scholar

Oncogenic Gene-Expression Programs in Leiomyosarcoma and Characterization of Conventional, Inflammatory, and Uterogenic Subtypes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Leiomyosarcoma (LMS) is a mesenchymal neoplasm with complex copy-number alterations and characteristic loss of tumor suppressor genes without known recurrent activating mutations. Clinical management of advanced LMS relies on chemotherapy and complementary palliative approaches, and research efforts to date have had limited success identifying clinically actionable biomarkers or targeted therapeutic vulnerabilities. To explore the biological underpinning of LMS, we evaluated gene-expression patterns of this disease in comparison with diverse sarcomas, nonmesenchymal neoplasms, and normal myogenic tissues. We identified a recurrent gene-expression program in LMS, with evidence of oncogenic evolution of an underlying smooth-muscle lineage-derived program characterized by activation of E2F1 and downstream effectors. Recurrently amplified or highly expressed genes in LMS were identified, including IGF1R and genes involved in retinoid signaling pathways. Though the majority of expressed transcripts were conserved across LMS samples, three separate subtypes were identified that were enriched for muscle-associated transcripts (conventional LMS), immune markers (inflammatory LMS), or a uterine-like gene-expression program (uterogenic LMS). Each of these subtypes expresses a unique subset of genes that may be useful in the management of LMS: IGF1R was enriched in conventional LMS, worse disease-specific survival was observed in inflammatory LMS, and prolactin was elaborated by uterogenic LMS. These results extend our understanding of LMS biology and identify several strategies and challenges for further translational investigation. Implications: LMS has a recurrent oncogenic transcriptional program and consists of molecular subtypes with biological and possible clinical implications.