Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(497), p. 2730-2758, 2020

DOI: 10.1093/mnras/staa1890

Links

Tools

Export citation

Search in Google Scholar

Cataloguing the radio-sky with unsupervised machine learning: a new approach for the SKA era

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We develop a new analysis approach towards identifying related radio components and their corresponding infrared host galaxy based on unsupervised machine learning methods. By exploiting Parallelized rotation and flipping INvariant Kohonen maps (pink), a self-organizing map (SOM) algorithm, we are able to associate radio and infrared sources without the a priori requirement of training labels. We present an example of this method using 894 415 images from the Faint Images of the Radio-Sky at Twenty centimeters (FIRST) and Wide-field Infrared Survey Explorer (WISE) surveys centred towards positions described by the FIRST catalogue. We produce a set of catalogues that complement FIRST and describe 802 646 objects, including their radio components and their corresponding AllWISE infrared host galaxy. Using these data products, we (i) demonstrate the ability to identify objects with rare and unique radio morphologies (e.g. ‘X’-shaped galaxies, hybrid FR I/FR II morphologies), (ii) can identify the potentially resolved radio components that are associated with a single infrared host, (iii) introduce a ‘curliness’ statistic to search for bent and disturbed radio morphologies, and (iv) extract a set of 17 giant radio galaxies between 700 and 1100 kpc. As we require no training labels, our method can be applied to any radio-continuum survey, provided a sufficiently representative SOM can be trained.