Published in

MDPI, Coatings, 7(10), p. 642, 2020

DOI: 10.3390/coatings10070642

Links

Tools

Export citation

Search in Google Scholar

CeO2 Containing Thin Films as Bioactive Coatings for Orthopaedic Implants

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Due to the fact of their ability to bond with human’s hard tissue, bioglasses have gained interest in the biomedical field with certain purposes regarding their usage in the replacement, healing or repair of bones. In the form of thin films, they trigger an increase in biocompatibility for the inert supports after implantation, based on surface engineering to ensure osteoinduction. For that, this research is focused on obtaining coatings based on cerium-enriched bioglass to generate bioactive and potential additional antimicrobial and antioxidant properties. The addressed oxide system was a novel and complex one, 46.10 SiO2–2.60 P2O5–16.90 CaO–10.00 MgO–19.40 Na2O–5.00 CeO2 (mol%), while two different synthesis methods, laser ablation and spin coating, were tackled comparatively. In the case of the first technique, substrate temperature was selected as variable parameter (room temperature or 300 °C). After conducting a complex characterization, films’ deposition was validated, their bioactive behaviour was proven by the formation of calcium phosphate after immersion in simulated body fluid for four weeks, while the impact exerted on the tested human fibroblast BJ cells (ATCC, CRL-2522) confirmed the applicative potential.