Published in

MDPI, Molecules, 12(25), p. 2911, 2020

DOI: 10.3390/molecules25122911

Links

Tools

Export citation

Search in Google Scholar

Targeting the Protein Tunnels of the Urease Accessory Complex: A Theoretical Investigation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Urease is a nickel-containing enzyme that is essential for the survival of several and often deadly pathogenic bacterial strains, including Helicobacter pylori. Notwithstanding several attempts, the development of direct urease inhibitors without side effects for the human host remains, to date, elusive. The recently solved X-ray structure of the HpUreDFG accessory complex involved in the activation of urease opens new perspectives for structure-based drug discovery. In particular, the quaternary assembly and the presence of internal tunnels for nickel translocation offer an intriguing possibility to target the HpUreDFG complex in the search of indirect urease inhibitors. In this work, we adopted a theoretical framework to investigate such a hypothesis. Specifically, we searched for putative binding sites located at the protein–protein interfaces on the HpUreDFG complex, and we challenged their druggability through structure-based virtual screening. We show that, by virtue of the presence of tunnels, some protein–protein interfaces on the HpUreDFG complex are intrinsically well suited for hosting small molecules, and, as such, they possess good potential for future drug design endeavors.