Published in

MDPI, Processes, 7(8), p. 757, 2020

DOI: 10.3390/pr8070757

Links

Tools

Export citation

Search in Google Scholar

Phytochemical Composition and Enzyme Inhibition Studies of Buxus papillosa C.K. Schneid

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The current research work is an endeavor to study the chemical profiling and enzyme-inhibition potential of different polarity solvent (n-hexane, dichloromethane—DCM and methanol—MeOH) extracts from the aerial and stem parts of Buxus papillosa C.K. Schneid. All the extracts were analyzed for HPLC-PDA phenolic quantification, while both (aerial and stem) DCM extracts were studied for UHPLC-MS phytochemical composition. The inhibitory activity against the clinically important enzymes having crucial role in different pathologies like skin diseases (tyrosinase), inflammatory problems (lipoxygenase—LOX) and diabetes mellitus (α-amylase) were studied using standard in vitro bioassays. The DCM extracts upon UHPLC-MS analysis conducted in both negative and positive ionization modes has led to the tentative identification of 52 important secondary metabolites. Most of these belonged to the alkaloid, flavonoid, phenolic and triterpenoid classes. The HPLC-PDA polyphenolic quantification identified the presence of 10 phenolic compounds. Catechin was present in significant amounts in aerial-MeOH (7.62 ± 0.45 μg/g extract) and aerial-DCM (2.39 ± 0.51-μg/g extract) extracts. Similarly, higher amounts of epicatechin (2.76 ± 0.32-μg/g extract) and p-hydroxybenzoic acid (1.06 ± 0.21 μg/g extract) were quantified in aerial-DCM and stem-MeOH extracts, respectively. Likewise, all the extracts exhibited moderate inhibition against all the tested enzymes. These findings explain the wide usage of this plant in folklore medicine and suggest that it could be further studied as an origin of novel bioactive phytocompounds and for the designing of new pharmaceuticals.