National Academy of Sciences, Proceedings of the National Academy of Sciences, 28(117), p. 16313-16323, 2020
Full text: Download
Significance Peroxiredoxins are most central to the cellular adaptation against oxidative stress. They act as oxidant scavengers, stress sensors, transmitters of signals, and chaperones, and they possess a unique quaternary switch that is intimately related to these functions. However, so far it has not been possible to monitor peroxiredoxin structural changes in the intact cellular environment. This study presents genetically encoded probes, based on homo-FRET (Förster resonance energy transfer between identical fluorophores) fluorescence polarization, that allow following these quaternary changes in real time, in living cells. We envisage that these probes can be used to address a broad range of questions related to the function of peroxiredoxins.