Published in

MDPI, International Journal of Molecular Sciences, 12(21), p. 4557, 2020

DOI: 10.3390/ijms21124557

Links

Tools

Export citation

Search in Google Scholar

Naringenin-Functionalized Multi-Walled Carbon Nanotubes: A Potential Approach for Site-Specific Remote-Controlled Anticancer Delivery for the Treatment of Lung Cancer Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Multi-walled carbon nanotubes functionalized with naringenin have been developed as new drug carriers to improve the performance of lung cancer treatment. The nanocarrier was characterized by Transmission Electron Microscopy (TEM), Fourier-Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy, Raman Spectroscopy, and Differential Scanning Calorimetry (DSC). Drug release rates were determined in vitro by the dialysis method. The cytotoxic profile was evaluated using the MTT assay, against a human skin cell line (hFB) as a model for normal cells, and against an adenocarcinomic human alveolar basal epithelial (A569) cell line as a lung cancer in vitro model. The results demonstrated that the functionalization of carbon nanotubes with naringenin occurred by non-covalent interactions. The release profiles demonstrated a pH-responsive behavior, showing a prolonged release in the tumor pH environment. The naringenin-functionalized carbon nanotubes showed lower cytotoxicity on non-malignant cells (hFB) than free naringenin, with an improved anticancer effect on malignant lung cells (A549) as an in vitro model of lung cancer.