Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, The Journal of Clinical Endocrinology & Metabolism, 8(105), p. e2738-e2752, 2020

DOI: 10.1210/clinem/dgaa267

Links

Tools

Export citation

Search in Google Scholar

Bone and Mineral Metabolism in Children with Nephropathic Cystinosis Compared with other CKD Entities

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Context Children with nephropathic cystinosis (NC) show persistent hypophosphatemia, due to Fanconi syndrome, as well as mineral and bone disorders related to chronic kidney disease (CKD); however, systematic analyses are lacking. Objective To compare biochemical parameters of bone and mineral metabolism between children with NC and controls across all stages of CKD. Design Cross-sectional multicenter study. Setting Hospital clinics. Patients Forty-nine children with NC, 80 CKD controls of the same age and CKD stage. Main outcome measures Fibroblast growth factor 23 (FGF23), soluble Klotho, bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin, osteoprotegerin (OPG), biochemical parameters related to mineral metabolism, and skeletal comorbidity. Results Despite Fanconi syndrome medication, NC patients showed an 11-fold increased risk of short stature, bone deformities, and/or requirement for skeletal surgery compared with CKD controls. This was associated with a higher frequency of risk factors such as hypophosphatemia, hypocalcemia, low parathyroid hormone (PTH), metabolic acidosis, and a specific CKD stage-dependent pattern of bone marker alterations. Pretransplant NC patients in mild to moderate CKD showed a delayed increase or lacked an increase in FGF23 and sclerostin, and increased BAP, TRAP5b, and OPG concentrations compared with CKD controls. Post-transplant, BAP and OPG returned to normal, TRAP5b further increased, whereas FGF23 and PTH were less elevated compared with CKD controls and associated with higher serum phosphate. Conclusions Patients with NC show more severe skeletal comorbidity associated with distinct CKD stage-dependent alterations of bone metabolism than CKD controls, suggesting impaired mineralization and increased bone resorption, which is only partially normalized after renal transplantation.