Published in

Springer, Biodiversity and Conservation, 8(29), p. 2729-2747, 2020

DOI: 10.1007/s10531-020-01996-6

Links

Tools

Export citation

Search in Google Scholar

Habitat fragmentation and forest management alter woody plant communities in a Central European beech forest landscape

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractHabitat fragmentation and forest management have been considered to drastically alter the nature of forest ecosystems globally. However, much uncertainty remains regarding the causative mechanisms mediating temperate forest responses, such as forest physical environment and the structure of woody plant assemblages, regardless of the role these forests play for global sustainability. In this paper, we examine how both habitat fragmentation and timber exploitation via silvicultural operations affect these two factors at local and habitat spatial scales in a hyper-fragmented landscape of mixed beech forests spanning more than 1500 km2 in SW Germany. Variables were recorded across 57 1000 m2 plots covering four habitats: small forest fragments, forest edges within large control forests, as well as managed and unmanaged forest interior sites. As expected, forest habitats differed in disturbance level, physical conditions and community structure at plot and habitat scale. Briefly, diversity of plant assemblages differed across all forest habitats (highest in edge forests) and correlated with integrative indices of edge, fragmentation and management effects. Surprisingly, managed and unmanaged forests did not differ in terms of species richness at local spatial scale, but managed forests exhibited a clear signal of physical/floristic homogenization as species promoted by silviculture proliferated; i.e. impoverished communities at landscape scale. Moreover, functional composition of plant communities responded to the microclimatic regime within forest fragments, resulting in a higher prevalence of species adapted to these microclimatic conditions. Our results underscore the notion that forest fragmentation and silvicultural management (1) promote changes in microclimatic regimes, (2) alter the balance between light-demanding and shade-adapted species, (3) support diverse floras across forest edges, and (4) alter patterns of beta diversity. Hence, in human-modified landscapes edge-affected habitats can be recognized as biodiversity reservoirs in contrast to impoverished managed interior forests. Furthermore, our results ratify the role of unmanaged forests as a source of environmental variability, species turnover, and distinct woody plant communities.