Published in

American Heart Association, Circulation Research, 11(94), p. 1515-1522, 2004

DOI: 10.1161/01.res.0000130527.92537.06

Links

Tools

Export citation

Search in Google Scholar

PPARγ Agonists Ameliorate Endothelial Cell Activation via Inhibition of Diacylglycerol–Protein Kinase C Signaling Pathway

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Subject- Peroxisome proliferator-activated receptor (PPAR)-gamma agonists are emerging as potential protectors against inflammatory cardiovascular diseases including atherosclerosis and diabetic complications. However, their molecular mechanism of action within vasculature remains unclear. We report here that PPARgamma agonists, thiazolidinedione class drugs (TZDs), or 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) were capable of activating diacylglycerol (DAG) kinase (DGK), resulting in attenuation of DAG levels and inhibition of protein kinase C (PKC) activation. The PPARgamma agonist-induced DGK was completely blocked by a dominant-negative mutant of PPARgamma, indicating an essential receptor-dependent action. Importantly, the suppression of DAG-PKC signaling pathway was functional linkage to the anti-inflammatory properties of PPARgamma agonists in endothelial cells (EC), characterized by the inhibition of proinflammatory adhesion molecule expression and adherence of monocytes to the activated EC induced by high glucose. These findings thus demonstrate a novel molecular action of PPARgamma agonists to suppress the DAG-PKC signaling pathway via upregulation of an endogenous attenuator, DGK. ; © 2004 American Heart Association, Inc.