Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 4(496), p. 5039-5051, 2020

DOI: 10.1093/mnras/staa1834

Links

Tools

Export citation

Search in Google Scholar

Updated theoretical period–age and period–age–colour relations for Galactic Classical Cepheids: an application to the Gaia DR2 sample

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Updated evolutionary and pulsational model predictions are combined in order to interpret the properties of Galactic Classical Cepheids in the Gaia Data Release 2. In particular, the location of the instability strip boundaries and the analytical relations connecting pulsation periods to the intrinsic stellar parameters are combined with evolutionary tracks to derive reliable and accurate period–age and the first theoretical period–age–colour relations in the Gaia bands for a solar chemical abundance pattern (Z = 0.02, Y = 0.28). The adopted theoretical framework takes into account possible variations in the mass–luminosity relation for the core helium-burning stage as due to changes in the core convective overshooting and/or mass-loss efficiency, as well as the impact on the instability strip boundaries due to different assumptions for superadiabatic convection efficiency. The inferred period–age and period–age–colour relations are applied to a selected sample of both fundamental and first overtone Gaia Cepheids, and individual ages for the various adopted theoretical scenarios are derived. The retrieved age distributions confirm that a variation in the efficiency of superadiabatic convection in the pulsational model computations has a negligible effect, whereas a brighter mass–luminosity relation, as produced by mild overshooting, rotation, or mass-loss, implies significantly older age predictions. Moreover, older Cepheids are found at larger Galactocentric distances, while first overtone Cepheids are found to be systematically older than the fundamental ones. The comparison with independent age distribution analysis in literature supports the predictive capability of current theoretical framework.