Published in

BioMed Central, BMC Developmental Biology, 1(8), 2008

DOI: 10.1186/1471-213x-8-104

Links

Tools

Export citation

Search in Google Scholar

The Drosophila STIM1 orthologue, dSTIM, has roles in cell fate specification and tissue patterning

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are. ; Abstract Background Mammalian STIM1 and STIM2 and the single Drosophila homologue dSTIM have been identified as key regulators of store-operated Ca2+ entry in cells. STIM proteins function both as molecular sensors of Ca2+concentration in the endoplasmic reticulum (ER) and the molecular triggers that activate SOC channels in the plasma membrane. Ca2+ is a crucial intracellular messenger utilised in many cellular processes, and regulators of Ca2+ homeostasis in the ER and cytosol are likely to play important roles in developmental processes. STIM protein expression is altered in several tumour types but the role of these proteins in developmental signalling pathways has not been thoroughly examined. Results We have investigated the expression and developmental function of dSTIM in Drosophila and shown that dSTIM is widely expressed in embryonic and larval tissues. Using the UAS-Gal4 induction system, we have expressed full-length dSTIM protein and a dsRNAi construct in different tissues. We demonstrate an essential role for dSTIM in larval development and survival, and a tissue-specific role in specification of mechanosensory bristles in the notum and specification of wing vein thickness. Conclusion Our studies show that dSTIM regulates growth and patterning of imaginal discs and indicate potential interactions with the Notch and Wingless signaling pathways. These interactions may be relevant to studies implicating STIM family proteins in tumorigenesis.