Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, communications materials, 1(1), 2020

DOI: 10.1038/s43246-020-0036-z

Links

Tools

Export citation

Search in Google Scholar

Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIntroducing layered quasi-2D perovskite phases into a conventional 3D perovskite light-absorbing matrix is a promising strategy for overcoming the limited environmental stability of 3D perovskite solar cells. Here, we present a simple drop-casting method for preparing hybrid perovskite films comprising both quasi-2D and quasi-3D phases, formed using phenylethylammonium or iso-butylammonium as spacer cations. The film morphology, phase purity, and crystal orientation of the hybrid quasi-2D/3D perovskite films are improved significantly by applying a simple N2 blow-drying step, together with inclusion of methylammonium chloride as an additive. An enhanced power conversion efficiency of 16.0% is achieved using an iso-butylammonium-based quasi-2D/3D perovskite layer which, to our knowledge, is the highest recorded to date for a quasi-2D/3D perovskite solar cells containing a non-spin-cast perovskite layer prepared under ambient laboratory conditions.