Published in

VIETNAM JOURNAL OF EARTH SCIENCES, 3(42), 2020

DOI: 10.15625/0866-7187/42/3/15047

Links

Tools

Export citation

Search in Google Scholar

Landslide susceptibility mapping using Forest by Penalizing Attributes (FPA) algorithm based machine learning approach

Journal article published in 2020 by Tran Van Phong, Hai-Bang Ly, Phan Trong Trinh ORCID, Indra Prakash, Binh Thai Pham
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Landslide susceptibility mapping is a helpful tool for assessment and management of landslides of an area. In this study, we have applied first time Forest by Penalizing Attributes (FPA) algorithm-based Machine Learning (ML) approach for mapping of landslide susceptibility at Muong Lay district (Vietnam). For this aim, 217 historical landslides locations were identified and analyzed for the development of FPA model and generation of susceptibility map. Nine landslide topographical and geo-environmental conditioning factors (curvature, geology/lithology, aspect, distance from faults, rivers and roads, weathering crust, slope, and deep division) were utilized to construct the training and validating datasets for landslide modeling. Different quantitative statistical indices including Area Under the Receiver Operating Characteristic (ROC) curve (AUC) were used to evaluate the performance of the model. The results indicate that the predictive capability of the FPA is very good for landslide susceptibility mapping on both training (AUC = 0.935) and validating (AUC = 0.882) datasets. Thus, the novel FPA based ML model can be utilized for the development of accurate landslide susceptibility map of the study area and this approach can also be applied in other landslide prone areas.