Published in

Oxford University Press, Journal of Experimental Botany, 12(71), p. 3524-3534, 2020

DOI: 10.1093/jxb/eraa122

Links

Tools

Export citation

Search in Google Scholar

Modelling time variations of root diameter and elongation rate as related to assimilate supply and demand

Journal article published in 2020 by Loïc Pagès ORCID, Marie Bernert, Guillaume Pagès
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract In a given root system, individual roots usually exhibit a rather homogeneous tip structure although highly different diameters and growth patterns, and this diversity is of prime importance in the definition of the whole root system architecture and foraging characteristics. In order to represent and predict this diversity, we built a simple and generic model at root tip level combining structural and functional knowledge on root elongation. The tip diameter, reflecting meristem size, is used as a driving variable of elongation. It varies, in response to the fluctuations of photo-assimilate availability, between two limits (minimal and maximal diameter). The elongation rate is assumed to be dependent on the transient value of the diameter. Elongation stops when the tip reaches the minimal diameter. The model could satisfactorily reproduce patterns of root elongation and tip diameter changes observed in various species at different scales. Although continuous, the model could generate divergent root classes as classically observed within populations of lateral roots. This model should help interpret the large plasticity of root elongation patterns which can be obtained in response to different combinations of endogenous and exogenous factors. The parameters could be used in phenotyping the root system.