Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Journal of Clinical Medicine, 6(9), p. 1841, 2020

DOI: 10.3390/jcm9061841

Links

Tools

Export citation

Search in Google Scholar

Characterization of Intervertebral Disc Changes in Asymptomatic Individuals with Distinct Physical Activity Histories Using Three Different Quantitative MRI Techniques

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

(1) Background: Assessments of intervertebral disc (IVD) changes, and IVD tissue adaptations due to physical activity, for example, remains challenging. Newer magnetic resonance imaging techniques can quantify detailed features of the IVD, where T2-mapping and T2-weighted (T2w) and Dixon imaging are potential candidates. Yet, their relative utility has not been examined. The performances of these techniques were investigated to characterize IVD differences in asymptomatic individuals with distinct physical activity histories. (2) Methods: In total, 101 participants (54 women) aged 25–35 years with distinct physical activity histories but without histories of spinal disease were included. T11/12 to L5/S1 IVDs were examined with sagittal T2-mapping, T2w and Dixon imaging. (3) Results: T2-mapping differentiated Pfirrmann grade-1 from all other grades (p < 0.001). Most importantly, T2-mapping was able to characterize IVD differences in individuals with different training histories (p < 0.005). Dixon displayed weak correlations with the Pfirrmann scale, but presented significantly higher water content in the IVDs of the long-distance runners (p < 0.005). (4) Conclusions: Findings suggested that T2-mapping best reflects IVD differences in asymptomatic individuals with distinct physical activity histories changes. Dixon characterized new aspects of IVD, probably associated with IVD hypertrophy. This complementary information may help us to better understand the biological function of the disc.