Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Energies, 12(13), p. 3044, 2020

DOI: 10.3390/en13123044

Links

Tools

Export citation

Search in Google Scholar

On the Potential of Silicon Intermediate Band Solar Cells

Journal article published in 2020 by Esther López ORCID, Antonio Martí ORCID, Elisa Antolín ORCID, Antonio Luque
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Intermediate band solar cells (IBSCs) have an efficiency limit of 63.2%, which is significantly higher than the 40.7% limit for conventional single gap solar cells. In order to achieve the maximum efficiency, the total bandgap of the cell should be in the range of ~2 eV. However, that fact does not prevent other cells based on different semiconductor bandgaps from benefiting from the presence of an intermediate band (IB) within their bandgap. Since silicon (1.12 eV bandgap) is the dominant material in solar cell technology, it is of interest to determine the limit efficiency of a silicon IBSC, because even a modest gain in efficiency could trigger a large commercial interest if the IB is implemented at low cost. In this work we study the limit efficiency of silicon-based IBSCs considering operating conditions that include the use of non-ideal photon casting between the optical transitions, different light intensities and Auger recombination. The results lead to the conclusion that a silicon IBSC, operating under the conventional model in which the sub-bandgaps add to the total silicon gap, provides an efficiency gain if operated in the medium-high concentration range. The performance of these devices is affected by Auger recombination only under extremely high concentrations.