Published in

MDPI, Sensors, 11(20), p. 3290, 2020

DOI: 10.3390/s20113290

Links

Tools

Export citation

Search in Google Scholar

Challenges of Post-measurement Histology for the Dielectric Characterisation of Heterogeneous Biological Tissues

Journal article published in 2020 by Alessandra La Gioia ORCID, Martin O’Halloran, Emily Porter ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The dielectric properties of biological tissues are typically measured using the open-ended coaxial probe technique, which is based on the assumption that the tissue sample is homogeneous. Therefore, for heterogeneous tissue samples, additional post-measurement sample processing is conducted. Specifically, post-measurement histological analysis may be performed in order to associate the measured dielectric properties with the tissue types present in a heterogeneous sample. Accurate post-measurement histological analysis enables identification of the constituent tissue types that contributed to the measured dielectric properties, and their relative distributions. There is no standard protocol for conducting post-measurement histological analysis, which leads to high numbers of excluded tissue samples and inconsistencies in the resulting reported data for heterogeneous tissues. To this extent, this study examines the post-measurement histological process and the challenges in associating the acquired dielectric properties with the different tissue types present in heterogeneous samples. The results demonstrate that the histological process inevitably alters the morphology of samples, thus introducing errors in the interpretation of the dielectric properties acquired from heterogeneous biological samples. Notably, sample size was seen to shrink by up to 90% through the histological process, meaning that sensing volume determined from fresh tissues is not directly applicable to histology images.