Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Agronomy, 6(10), p. 825, 2020

DOI: 10.3390/agronomy10060825

Links

Tools

Export citation

Search in Google Scholar

Antifungal and Phytotoxic Activities of Essential Oils: In Vitro Assays and Their Potential Use in Crop Protection

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

(1) Background: The use of natural products based on essential oils (EO) is nowadays arousing great interest as an alternative method to control plant pathogens and weeds. However, EO possess low bioavailability and are highly volatile, and their encapsulation in hydroxypropyl-ß-cyclodextrin (HP-β-CD) could be a means to enhance their stability and maintain their bioactivity. Thus, the current study aims at investigating, in the presence and the absence of HP-β-CD, the antifungal and phytotoxic activities of nine EO, distilled from plant species belonging to Alliaceae, Apiaceae, and Cupressaceae families, with considerations for their chemical composition. (2) Methods: EO antifungal activity was assessed by direct contact and volatility assays against Fusarium culmorum, a major phytopathogenic fungi, while phytotoxic effects were evaluated against lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), by seedling’s emergence and growth assays. (3) Results: These EO inhibit fungal growth in both direct contact and volatility assays, with half-maximal inhibitory concentrations (IC50) ranging from 0.01 to 4.2 g L−1, and from 0.08 up to 25.6 g L−1, respectively. Concerning phytotoxicity, these EO have shown great potential in inhibiting lettuce (IC50 ranging from 0.0008 up to 0.3 g L−1) and rye-grass (IC50 ranging from 0.01 to 0.8 g L−1) seedlings’ emergence and growth. However, the EO encapsulation in HP-β-CD has not shown a significant improvement in EO biological properties in our experimental conditions. (4) Conclusion: All tested EO present antifungal and phytotoxic activities, with diverse efficacy regarding their chemical composition, whilst no increase of their biological effects was observed with HP-β-CD.