Published in

American Association for the Advancement of Science, Science, 6495(368), p. 1127-1131, 2020

DOI: 10.1126/science.aau8768

Links

Tools

Export citation

Search in Google Scholar

MTOR signaling orchestrates stress-induced mutagenesis, facilitating adaptive evolution in cancer

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

How cancer cells adapt to stress Bacteria adapt to harsh conditions such as antibiotic exposure by acquiring new mutations, a process called stress-induced mutagenesis. Cipponi et al. investigated whether similar programs of mutagenesis play a role in the response of cancer cells to targeted therapies. Using in vitro models of intense drug selection and genome-wide functional screens, the authors found evidence for an analogous process in cancer and showed that it is regulated by the mammalian target of rapamycin (mTOR) signaling pathway. This pathway appears to mediate a stress-related switch to error-prone DNA repair, resulting in the generation of mutations that facilitate the emergence of drug resistance. Science , this issue p. 1127