Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nutrients, 6(12), p. 1696, 2020

DOI: 10.3390/nu12061696

Links

Tools

Export citation

Search in Google Scholar

5-cis-, Trans- and Total Lycopene Plasma Concentrations Inversely Relate to Atherosclerotic Plaque Burden in Newly Diagnosed Type 2 Diabetes Subjects

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Diabetic subjects are at increased risk of cardiovascular disease. Atherosclerosis, the common soil of most of the cardiovascular complications, is more prevalent and extensive in this population due not only to hyperglycemia, insulin resistance, and dyslipidemia, but also to inflammation and oxidative stress. Lycopenes are bioactive compounds with antioxidant and anti-inflammatory activities mostly supplied by tomato and tomato byproducts. We investigated the association between circulating lycopenes and carotid plaque burden in diabetic patients, in a cross-sectional study in 105 newly diagnosed diabetic subjects. Atheroma plaque (wall thickness ≥ 1.5 mm), number of plaques, and plaque burden (sum of maximum heights of all plaques) were assessed by sonographic evaluation of carotid arteries. Plasma lycopenes (5-cis-, 9-cis-, 13-cis-, and trans-lycopene) were quantified by high performance liquid chromatography–mass spectrometry HPLC-MS. Atheroma plaque was observed in 75 participants, from which 38 presented one plaque and 37 two or more carotid plaques. No differences were observed in the plasmatic concentrations of lycopenes between subjects with and without atherosclerotic plaque presence. However, plaque burden was inversely associated with 5-cis-lycopene, all cis-lycopene isomers, trans-lycopene, and total lycopene isomers (all, p < 0.05). High plasma levels of lycopenes inversely relate to atherosclerotic burden. We provide novel evidence that suggests that the consumption of compounds found in tomato and tomato byproducts might be beneficial for the prevention of atherosclerosis.