Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Catalysts, 6(10), p. 637, 2020

DOI: 10.3390/catal10060637

Links

Tools

Export citation

Search in Google Scholar

Strategy for Modifying Layered Perovskites toward Efficient Solar Light-Driven Photocatalysts for Removal of Chlorinated Pollutants

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We have explored an efficient strategy to enhance the overall photocatalytic performances of layered perovskites by increasing the density of hydroxyl group by protonation. The experimental procedure consisted of the slow replacement of interlayer Rb+ cation of RbLaTa2O7 Dion-Jacobson (DJ) perovskite by H+ via acid treatment. Two layered perovskites synthesized by mild (1200 °C for 18 h) and harsh (950 and 1200 °C, for 36 h) annealing treatment routes were used as starting materials. The successful intercalation of proton into D-J interlayer galleries was confirmed by FTIR spectroscopy, thermal analyses, ion chromatography and XPS results. In addition, the ion-exchange route was effective to enlarge the specific surface area, thus enhancing the supply of photocharges able to participate in redox processes involved in the degradation of organic pollutants. HLaTa_01 protonated layered perovskite is reported as a efficient photocatalyst for photomineralization of trichloroethylene (TCE) to Cl− and CO2 under simulated solar light. The enhanced activity is attributed to combined beneficial roles played by the increased specific surface area and high density of hydroxyl groups, leading to an efficiency of TCE mineralization of 68% moles after 5 h of irradiation.