Published in

The Company of Biologists, Journal of Cell Science, 2020

DOI: 10.1242/jcs.244657

Links

Tools

Export citation

Search in Google Scholar

Proteomic analysis reveals the direct recruitment of intrinsically disordered regions to stress granules

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Stress granules (SGs) are stress-induced membraneless condensates that store non-translating mRNA and stalled translation initiation complexes. While metazoan SGs are dynamic compartments where proteins can rapidly exchange with their surroundings, yeast SGs seem largely static. To gain a better understanding of the yeast SGs, we identified proteins that sediment after heat-shock by mass spectrometry. Proteins that sediment upon heat-shock are biased toward a subset of abundant proteins that are significantly enriched in intrinsically disordered regions (IDRs). Heat-induced SG localization of over 80 proteins were confirmed using microscopy, including 32 proteins not previously known to localize to SGs. We found that several IDRs were sufficient to mediate SG recruitment. Moreover, the dynamic exchange of IDRs can be observed via FRAP, while other components remain immobile. Lastly, we showed that the IDR of the Ubp3 deubiquitinase was critical for yeast SG formation. This work shows that IDRs can be sufficient for SG incorporation, can remain dynamic in vitrified SGs, and can play an important role in cellular compartmentalization upon stress.