Published in

SAGE Publications, Journal of Cerebral Blood Flow and Metabolism, 3(41), p. 670-683, 2020

DOI: 10.1177/0271678x20927101

Links

Tools

Export citation

Search in Google Scholar

Cerebroarterial pulsatility and resistivity indices are associated with cognitive impairment and white matter hyperintensity in elderly subjects: A phase-contrast MRI study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Increased cerebroarterial pulsations are thought to be contributing factors in microvascular damage and cognitive impairment. In this study, we assessed the utility of two-dimensional (2D) phase-contrast MRI (PC-MRI) in quantifying cerebroarterial pulsations and evaluated the associations of pulsatile and non-pulsatile hemodynamic measures with cognitive performance and white matter hyperintensities (WMH). Neurocognitive assessments on 50 elderly subjects were performed using clinical dementia rating (CDR) and Montreal cognitive assessment (MoCA). An electrocardiogram-gated 2D PC-MRI sequence was used to calculate mean flow rate, pulsatility index (PI), and resistivity index (RI) of the internal carotid artery. For each subject, whole brain global cerebral blood flow (gCBF) and relative WMH volume were also quantified. Elevated RI was significantly associated with reduced cognitive performance quantified using MoCA ( p = 0.04) and global CDR ( p = 0.02). PI and RI were both significantly associated with relative WMH volume ( p = 0.01, p < 0.01, respectively). However, non-pulsatile hemodynamic measures were not associated with cognitive impairment or relative WMH volume. This study showed that the cerebroarterial pulsatile measures obtained using PC-MRI have stronger association with the measures of cognitive impairment compared to global blood flow measurement and as such, might be useful as potential biomarkers of cerebrovascular dysfunction in preclinical populations.