Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Environmental Research and Public Health, 11(17), p. 3949, 2020

DOI: 10.3390/ijerph17113949

Links

Tools

Export citation

Search in Google Scholar

The Importance of Accounting for Parameter Uncertainty in SF-6D Value Sets and Its Impact on Studies that Use the SF-6D to Measure Health Utility

Journal article published in 2020 by Samer A. Kharroubi ORCID, Yara Beyh ORCID, Esmail Abdul Fattah ORCID, Tracey Young
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: The parameter uncertainty in the six-dimensional health state short form (SF-6D) value sets is commonly ignored. There are two sources of parameter uncertainty: uncertainty around the estimated regression coefficients and uncertainty around the model’s specification. This study explores these two sources of parameter uncertainty in the value sets using probabilistic sensitivity analysis (PSA) and a Bayesian approach. Methods: We used data from the original UK/SF-6D valuation study to evaluate the extent of parameter uncertainty in the value set. First, we re-estimated the Brazier model to replicate the published estimated coefficients. Second, we estimated standard errors around the predicted utility of each SF-6D state to assess the impact of parameter uncertainty on these estimated utilities. Third, we used Monte Carlo simulation technique to account for the uncertainty on these estimates. Finally, we used a Bayesian approach to quantifying parameter uncertainty in the value sets. The extent of parameter uncertainty in SF-6D value sets was assessed using data from the Hong Kong valuation study. Results: Including parameter uncertainty results in wider confidence/credible intervals and improved coverage probability using both approaches. Using PSA, the mean 95% confidence intervals widths for the mean utilities were 0.1394 (range: 0.0565–0.2239) and 0.0989 (0.0048–0.1252) with and without parameter uncertainty whilst, using the Bayesian approach, this was 0.1478 (0.053–0.1665). Upon evaluating the impact of parameter uncertainty on estimates of a population’s mean utility, the true standard error was underestimated by 79.1% (PSA) and 86.15% (Bayesian) when parameter uncertainty was ignored. Conclusions: Parameter uncertainty around the SF-6D value set has a large impact on the predicted utilities and estimated confidence intervals. This uncertainty should be accounted for when using SF-6D utilities in economic evaluations. Ignoring this additional information could impact misleadingly on policy decisions.