Published in

MDPI, Symmetry, 6(12), p. 896, 2020

DOI: 10.3390/sym12060896

Links

Tools

Export citation

Search in Google Scholar

Applications of Symmetry Breaking in Plasmonics

Journal article published in 2020 by Grégory Barbillon ORCID, Andrey Ivanov, Andrey K. Sarychev ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Plasmonics is one of the most used domains for applications to optical devices, biological and chemical sensing, and non-linear optics, for instance. Indeed, plasmonics enables confining the electromagnetic field at the nanoscale. The resonances of plasmonic systems can be set in a given domain of a spectrum by adjusting the geometry, the spatial arrangement, and the nature of the materials. Moreover, symmetry breaking can be used for the further improvement of the optical properties of the plasmonic systems. In the last three years, great advances in or insights into the use of symmetry breaking in plasmonics have occurred. In this mini-review, we present recent insights and advances on the use of symmetry breaking in plasmonics for applications to chemistry, sensing, devices, non-linear optics, and chirality.