Published in

Microbiology Society, Journal of General Virology, 8(101), p. 806-815, 2020

DOI: 10.1099/jgv.0.001443

Links

Tools

Export citation

Search in Google Scholar

Rapid generation of rotavirus single-gene reassortants by means of eleven plasmid-only based reverse genetics

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Reassortment is an important mechanism in the evolution of group A rotaviruses (RVAs), yielding viruses with novel genetic and phenotypic traits. The classical methods for generating RVA reassortants with the desired genetic combinations are laborious and time-consuming because of the screening and selection processes required to isolate a desired reassortant. Taking advantage of a recently developed RVA reverse genetics system based on just 11 cloned cDNAs encoding the RVA genome (11 plasmid-only system), we prepared a panel of simian SA11-L2 virus-based single-gene reassortants, each containing 1 segment derived from human KU virus of the G1P[8] genotype. It was shown that there was no gene-specific restriction of the reassortment potential. In addition to these 11 single-gene reassortants, a triple-gene reassortant with KU-derived core-encoding VP1–3 gene segments with the SA11-L2 genetic background, which make up a virion composed of the KU-based core, and SA11-L2-based intermediate and outer layers, could also be prepared with the 11 plasmid-only system. Finally, for possible clinical application of this system, we generated a series of VP7 reassortants representing all the major human RVA G genotypes (G1–4, G9 and G12) efficiently. The preparation of each of these single-gene reassortants was achieved within just 2 weeks. Our results demonstrate that the 11 plasmid-only system allows the rapid and reliable generation of RVA single-gene reassortants, which will be useful for basic research and clinical applications.