Published in

The Company of Biologists, Disease Models and Mechanisms, 2020

DOI: 10.1242/dmm.044586

Links

Tools

Export citation

Search in Google Scholar

A mouse SWATH-MS reference spectral library enables deconvolution of species-specific proteomic alterations in human tumour xenografts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

SWATH-mass spectrometry (MS) enables accurate and reproducible proteomic profiling in multiple model organisms including the mouse. Here we present a comprehensive mouse reference spectral library (MouseRefSWATH) that permits quantification of up to 10,597 proteins (62.2% of the mouse proteome) by SWATH-MS. We exploit MouseRefSWATH to develop an analytical pipeline for species-specific deconvolution of proteomic alterations in human tumour xenografts (XenoSWATH). This method overcomes the challenge of high sequence similarity between mouse and human proteins, facilitating the study of host microenvironment-tumour interactions from ‘bulk tumour’ measurements. We apply the XenoSWATH pipeline to characterise an intraductal xenograft model of breast ductal carcinoma in-situ and uncover complex regulation consistent with stromal reprogramming, where the modulation of cell migration pathways is not restricted to tumour cells but also operate in the mouse stroma upon progression to invasive disease. MouseRefSWATH and XenoSWATH opens new opportunities for in-depth and reproducible proteomic assessment to address wide-ranging biological questions involving this important model organism.