Published in

MDPI, Cells, 6(9), p. 1367, 2020

DOI: 10.3390/cells9061367

Links

Tools

Export citation

Search in Google Scholar

Orthotopic T-Cell Receptor Replacement—An “Enabler” for TCR-Based Therapies

Journal article published in 2020 by Kilian Schober ORCID, Thomas R. Müller ORCID, Dirk H. Busch ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Natural adaptive immunity co-evolved with pathogens over millions of years, and adoptive transfer of non-engineered T cells to fight infections or cancer so far exhibits an exceptionally safe and functional therapeutic profile in clinical trials. However, the personalized nature of therapies using virus-specific T cells, donor lymphocyte infusion, or tumor-infiltrating lymphocytes makes implementation in routine clinical care difficult. In principle, genetic engineering can be used to make T-cell therapies more broadly applicable, but so far it significantly alters the physiology of cells. We recently demonstrated that orthotopic T-cell receptor (TCR) replacement (OTR) by clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9) can be used to generate engineered T cells with preservation of near-physiological function. In this review, we present the current status of OTR technology development and discuss its potential for TCR-based therapies. By providing the means to combine the therapeutic efficacy and safety profile of physiological T cells with the versatility of cell engineering, OTR can serve as an “enabler” for TCR-based therapies.