Published in

MDPI, Sensors, 11(20), p. 3020, 2020

DOI: 10.3390/s20113020

Links

Tools

Export citation

Search in Google Scholar

Advanced Monitoring Systems Based on Battery-Less Asset Tracking Modules Energized through RF Wireless Power Transfer

Journal article published in 2020 by Roberto La Rosa ORCID, Catherine Dehollain, Patrizia Livreri ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Asset tracking involving accurate location and transportation data is highly suited to wireless sensor networks (WSNs) featuring battery-less nodes that can be deployed in virtually any environment and require little or no maintenance. In response to the growing demand for advanced battery-less sensor tag solutions, this article presents a system for identifying and monitoring the speeds of assets in a WSN with battery-less tags that receive all their operating energy through radio frequency (RF) wireless power transfer (WPT) architecture, and a unique measurement approach to generate time-domain speed readouts. The assessment includes performance characteristics and key features of a system on chip (SoC) purposely designed to power a node through RF WPT. The result is an innovative solution for RF to DC conversion able to address the principal difficulties associated with maximum power conversion efficiency (PCE) with sensitivity and vice versa, a strategy, and a design optimization model to indicate the number of readers required for reliable asset identification and speed measurement. Model validation is performed through specific tests. Experimental results demonstrating the viability of the proposed advanced monitoring system are provided.