Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(11), 2020

DOI: 10.1038/s41467-020-16523-y

Links

Tools

Export citation

Search in Google Scholar

Multi-site-mediated entwining of the linear WIR-motif around WIPI β-propellers for autophagy

Journal article published in 2020 by Jinqi Ren ORCID, Ruobing Liang, Wenjuan Wang, Dachuan Zhang, Li Yu, Wei Feng ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWIPI proteins (WIPI1-4) are mammalian PROPPIN family phosphoinositide effectors essential for autophagosome biogenesis. In addition to phosphoinositides, WIPI proteins can recognize a linear WIPI-interacting-region (WIR)-motif, but the underlying mechanism is poorly understood. Here, we determine the structure of WIPI3 in complex with the WIR-peptide from ATG2A. Unexpectedly, the WIR-peptide entwines around the WIPI3 seven-bladed β-propeller and binds to three sites in blades 1–3. The N-terminal part of the WIR-peptide forms a short strand that augments the periphery of blade 2, the middle segment anchors into an inter-blade hydrophobic pocket between blades 2–3, and the C-terminal aromatic tail wedges into another tailored pocket between blades 1–2. Mutations in three peptide-binding sites disrupt the interactions between WIPI3/4 and ATG2A and impair the ATG2A-mediated autophagic process. Thus, WIPI proteins recognize the WIR-motif by multi-sites in multi-blades and this multi-site-mediated peptide-recognition mechanism could be applicable to other PROPPIN proteins.