Published in

Illinois Journal of Mathematics, 3(56), p. 967-979, 2012

DOI: 10.1215/ijm/1391178558

Links

Tools

Export citation

Search in Google Scholar

A refinement of a congruence result by van Hamme and Mortenson

Journal article published in 2012 by Zhi-Wei Sun
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Let $p$ be an odd prime. In 2008, E. Mortenson proved van Hamme’s following conjecture: ¶ \[∑_{k=0}^{(p-1)/2}(4k+1)\Bigl({\matrix{-1/2\\k}}\Bigr)^{3}≡(-1)^{(p-1)/2}p\ \bigl(\operatorname{mod}p^{3}\bigr).\] ¶ In this paper, we show further that ¶ \begin{eqnarray*}∑_{k=0}^{p-1}(4k+1)\Bigl({\matrix{-1/2\\k}}\Bigr)^{3}&≡&∑_{k=0}^{(p-1)/2}(4k+1)\Bigl({\matrix{-1/2\\k}}\Bigr)^{3}\\[-2pt]&≡&(-1)^{(p-1)/2}p+p^{3}E_{p-3}\ \bigl(\operatorname{mod}p^{4}\bigr),\end{eqnarray*} ¶ where $E_{0},E_{1},E_{2},…$ are Euler numbers. We also prove that if $p>3$ then ¶ \begin{eqnarray*}&&∑_{k=0}^{(p-1)/2}\frac{20k+3}{(-2^{10})^{k}}\Bigl({\matrix{4k\\k,k,k,k}}\Bigr)\\&&\quad ≡(-1)^{(p-1)/2}p\bigl(2^{p-1}+2-\bigl(2^{p-1}-1\bigr)^{2}\bigr)\ \bigl(\operatorname{mod}p^{4}\bigr).\end{eqnarray*}