Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Energies, 10(13), p. 2662, 2020

DOI: 10.3390/en13102662

Links

Tools

Export citation

Search in Google Scholar

A Systematic PVQV-Curves Approach for Investigating the Impact of Solar Photovoltaic-Generator in Power System Using PowerWorld Simulator

Journal article published in 2020 by Abdullahi Oboh Muhammed ORCID, Muhyaddin Rawa ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

With the recent growing interest in renewable energy integrated power systems across the globe for the various economic and environmental benefits, it is also significant to consider their influence on voltage stability in power systems. Therefore, this paper reports the static voltage stability impact of solar photovoltaic generation on power networks using PowerWorld simulator power-voltage (P–V)- and voltage-reactive power (V–Q)-curves to investigate the renewable energy generator model performance suitability. The impact of varying power factor control and static voltage droop control of a photovoltaic plant on the maximum generated power, threshold voltage profile and reactive power marginal loading has been examined. Besides, the concept of percentage change in voltage-power sensitivity has been systematically utilized to determine the optimal location for the solar photovoltaic generator on the power grid and the feasible penetrations have been defined for selected system buses. From the simulation results it can be concluded that in a steady-state analysis of the grid integrated power system the effects of power factor (pf) control and voltage droop control should be considered by power grid engineers for effective system operation and, equally, the application of percentage change in voltage-power sensitivity should be extended to real networks to determine the best positions for multiple installations of renewable energy resources.