Published in

American Association for the Advancement of Science, Science, 6494(368), p. 1002-1006, 2020

DOI: 10.1126/science.aay8447

Links

Tools

Export citation

Search in Google Scholar

Control of zeolite pore interior for chemoselective alkyne/olefin separations

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Zeolites that prefer alkynes Alkenes such as ethylene and propene must be separated from alkynes before they can be converted in polymers. Drawbacks in current methods, such as hydrogenation of alkynes producing unwanted alkanes, has spurred interest in sorption separation methods. Zeolites have generally been inefficient, given the similar sizes and volatilities of the molecules. Chai et al. incorporated atomically dispersed divalent transition metal cations into faujasite zeolite and found that the nickel-containing analog efficiently removed alkynes from olefins through chemoselective binding at open nickel(II) sites. At ambient conditions in the presence of water and carbon dioxide, the zeolites retained separation selectivities of 100 and 92, respectively, for acetylene over ethylene and propyne over propylene for 10 adsorption-desorption cycles. Science , this issue p. 1002