Published in

American Society of Clinical Oncology, Journal of Clinical Oncology, 15_suppl(38), p. 3128-3128, 2020

DOI: 10.1200/jco.2020.38.15_suppl.3128

Links

Tools

Export citation

Search in Google Scholar

The HLA Ligand Atlas: A novel immuno-oncology resource for T-cell antigen discovery.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

3128 Background: The human leukocyte antigen (HLA) complex regulates the adaptive immune response by showcasing the intracellular and extracellular protein content to the immune system, which is the basis for T cell-dependent tumor rejection. Therefore, a comprehensive map of the entirety of both HLA class I- and class II-presented peptides from various benign tissues is a highly sought after resource, as it enables the definition of tumor-association on the immunologically pivotal level of the HLA ligandome. Methods: Human tissue samples were snap frozen post mortem during autopsy. The study was approved by the local IRB. HLA ligands were immunopurified and characterized using an Orbitrap Fusion Lumos mass spectrometer coupled to an Ultimate 3000 RSLC Nano UHPLC System. Data acquisition was performed as technical triplicates in data-dependent mode, and data were analyzed using the containerized, computational pipeline MHCquant. Results: In this work, we describe the HLA Ligand Atlas, a comprehensive collection of matched HLA class I and class II ligandomes from 29 non-malignant tissues and 13 human subjects (208 samples in total), covering 38 HLA class I, and 17 HLA*DRB alleles and comprising 48,381 HLA class I and 16,146 HLA class II peptides. Nearly 50% of HLA ligands have not been previously described. The HLA Ligand Atlas is publicly available as a raw data resource, but also in the form of a user-friendly web interface that allows users to quickly formulate complex queries against the data set. Both downloadable data and the query interface are available at www.hla-ligand-atlas.org. Conclusions: This data set provides a valuable tool for research in diverse fields such as systems biology, general immunology, autoimmune disease and organ transplantation. Most importantly, the HLA Ligand Atlas provides essential information for translational applications in immuno-oncology. The knowledge of HLA ligands from benign tissues strongly supports the informed design of proteogenomic HLA-dependent target discovery approaches.