Published in

IOP Publishing, Materials Research Express, 6(7), p. 064004, 2020

DOI: 10.1088/2053-1591/ab96fb

Links

Tools

Export citation

Search in Google Scholar

Facile synthesis OF Ge<sub>1-x</sub>Sn<sub>x</sub> nanowires

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract We report a facile one-pot solution phase synthesis of one-dimensional Ge1−x Sn x nanowires. These nanowires were synthesized in situ via a solution-liquid-solid (SLS) approach in which triphenylchlorogermane was reduced by sodium borohydride in the presence of tin nanoparticle seeds. Straight Ge1−x Sn x nanowires were obtained with an average diameter of 60 ± 20 nm and an approximate aspect ratio of 100. Energy-dispersive x-ray spectroscopy (EDX) and powder x-ray diffraction (PXRD) analysis revealed that tin was homogeneously incorporated within the germanium lattices at levels up to 10 at%, resulting in a measured lattice constant of 0.5742 nm. The crystal structure and growth orientation of the nanowires were investigated using high-resolution transmission electron microscopy (HRTEM). The nanowires adopted a face-centred-cubic structure with individual wires exhibiting growth along either the 〈111〉, 〈110〉 or 〈112〉 directions, in common with other group IV nanowires. Growth in the 〈112〉 direction was found to be accompanied by longitudinal planar twin defects.