Published in

American Society for Horticultural Science, Journal of the American Society for Horticultural Science, 5(139), p. 587-596, 2014

DOI: 10.21273/jashs.139.5.587

Links

Tools

Export citation

Search in Google Scholar

Antioxidant and Hormone Responses to Heat Stress in Two Kentucky Bluegrass Cultivars Contrasting in Heat Tolerance

Journal article published in 2014 by Feifei Li, Da Zhan, Lixin Xu, Liebao Han, Xunzhong Zhang
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Heat stress is a major limiting factor for growth of cool-season perennial grass species, and mechanisms of heat tolerance have not been well understood. This study was designed to investigate antioxidant enzyme and hormone metabolism responses to heat stress in two kentucky bluegrass (Poa pratensis L.) cultivars contrasting in heat tolerance. The plants were subjected to 20/20 °C [day/night (control)] or 38/30 °C [day/night (heat stress)] for 28 days in growth chambers. Heat stress increased leaf electrolyte leakage (EL) and malondialdehyde (MDA) with heat-tolerant cultivar EverGlade exhibiting lower levels of EL and MDA relative to heat-sensitive cultivar Kenblue under heat stress. Superoxide dismutase (SOD) and catalase (CAT) activity increased and then declined during 28 days of heat stress. Peroxidase (POD) and ascorbate peroxidase (APX) activity declined and then increased during heat stress. ‘EverGlade’ had greater activities of SOD, CAT, POD, and APX relative to ‘Kenblue’ under heat stress. In addition, ‘EverGlade’ had two additional SOD isozymes and three additional POD isozymes relative to ‘Kenblue’ under heat stress. Leaf abscisic acid (ABA) increased in response to heat stress. Leaf indole-3-acetic acid (IAA) increased and then declined during heat stress. ‘OverGlade’ had higher ABA and IAA content relative to ‘Kenblue’. At the end of heat stress, leaf IAA and ABA content were 27.8% and 73% higher in ‘EverGlade’ relative to ‘Kenblue’, respectively. The results indicated that antioxidant enzymes and the hormones (ABA and IAA) were associated with kentucky bluegrass heat tolerance. Selection and use of cultivars with higher IAA and ABA content and greater antioxidant enzyme activities may improve kentucky bluegrass growth and quality under heat stress.