Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, Journal of Radioanalytical and Nuclear Chemistry, 1(299), p. 277-282

DOI: 10.1007/s10967-013-2722-5

Links

Tools

Export citation

Search in Google Scholar

Instrumental neutron activation analysis of an enriched 28Si single-crystal

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The determination of the Avogadro constant plays a key role in the redefinition of the kilogram in terms of a fundamental constant. The present experiment makes use of a silicon single-crystal highly enriched in 28Si that must have a total impurity mass fraction smaller than a few parts in 109. To verify this requirement, we previously developed a relative analytical method based on neutron activation for the elemental characterization of a sample of the precursor natural silicon crystal WASO 04. The method is now extended to fifty-nine elements and applied to a monoisotopic 28Si single-crystal that was grown to test the achievable enrichment. Since this crystal was likely contaminated, this measurement tested also the detection capabilities of the analysis. The results quantified contaminations by Ge, Ga, As, Tm, Lu, Ta, W and Ir and, for a number of the detectable elements, demonstrated that we can already reach the targeted 1 ng/g detection limit. ; Comment: 9 pages, 1 figure, 1 table