Published in

MDPI, Polymers, 5(12), p. 1193, 2020

DOI: 10.3390/polym12051193

Links

Tools

Export citation

Search in Google Scholar

High-Molecular-Weight PLA-b-PEO-b-PLA Triblock Copolymer Templated Large Mesoporous Carbons for Supercapacitors and CO2 Capture

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

High-molecular-weight PLA440-b-PEO454-b-PLA440 (LEL) triblock copolymer was synthesized through simple ring-opening polymerization (ROP) by using the commercial homopolymer HO-PEO454-OH as the macro-initiator. The material acted as a single template to prepare the large mesoporous carbons by using resol-type phenolic resin as a carbon source. Self-assembled structures of phenolic/LEL blends mediated by hydrogen bonding interaction were determined by FTIR and SAXS analyses. Through thermal curing and carbonization procedures, large mesoporous carbons (>50 nm) with a cylindrical structure and high surface area (>600 m2/g) were obtained because the OH units of phenolics prefer to interact with PEO block rather than PLA block, as determined by FTIR spectroscopy. Furthermore, higher CO2 capture and good energy storage performance were observed for this large mesoporous carbon, confirming that the proposed approach provides an easy method for the preparation of large mesoporous materials.